
Journal of Applied Mechanics and Technical Physics, Vol. 45, No. 6, pp. 871–877, 2004

CALCULATION OF THE FIELD OF INTERNAL STRESSES

FOR A PLANE-STRAINED STATE OF AN ELASTIC

BODY WITH DISLOCATIONS

UDC 539.3O. V. Belligh1 and S. P. Kiselev2

Results of numerical calculations of internal stresses in a material for the case of a plane strain
are presented. The dependence of the stress distribution on the spatial structure of dislocations is
demonstrated.
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It is known that mechanical characteristics of metals, such as strength, plasticity, and creep, depend on
internal stresses in a material. The level of internal stresses can be increased by material quenching or decreased
by annealing. In this aspect, calculation of internal stresses is an important problem. One of the main sources
of internal stresses are dislocations whose number in the material can be rather high. In the present paper, the
internal stresses generated by dislocations are calculated with the help of a mathematical model of plasticity based
on the gauge theory of defects with allowance for energy dissipation [1].

Let us consider the problem of determining stresses in an elastic body with dislocations in the absence of
external loads for a plane-strained state. In this case, the equations from [1] acquire the form
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where αzx and αzy are the components of the tensor of density of dislocations, βij is the tensor of plastic distortion,
εp

xx and εp
xy are the components of the tensor of plastic strain, σij is the stress tensor, P is the pressure, Sij is
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the stress deviator, K is the volume compression modulus, µ is the shear modulus, ρ is the density of the strained
material, ρ0 is the density of the nonstrained material, εij and εp

ij are the tensors of strain and plastic strain, eij , ee
ij ,

and ep
ij are the deviators of strain, elastic strain, and plastic strain, respectively, and ux and uy are the components

of the displacement vector.
As was shown in [2], the total stresses σ̃ij in the material in the two-dimensional case are determined by the

formulas

σ̃xx = σxx + σ′xx, σ̃yy = σyy + σ′yy, σ̃xy = σxy + σ′xy,

σ̃yx = σyx + σ′yx, σ′xx = −C
∂αzx

∂y
, σ′yy = C

∂αzy

∂x
, (2)

σ′xy = C
∂αzx

∂x
, σ′yx = −C

∂αzy

∂y
,

where C is a constant and σ′ij are self-balanced stresses identically satisfying the equilibrium equations and zero
boundary conditions. The stresses σij are determined from system (1). In the absence of external loads, system
(1), (2), should satisfy zero boundary conditions at the boundary of the body with the normal n:

σxxnx + σxyny = 0, σyyny + σyxnx = 0, αzx = αzy = 0. (3)

According to [1], the steady state of the body is possible if the deviator of total stresses S̃ij satisfies the inequality

S̃ijS̃ij < (2/3)Y 2
S , S̃ij = σ̃ij − (1/3)σ̃kkδij ,

where YS is the yield point of the material. In this case, the internal stresses are balanced by the “dry friction
force” [1] S̃ij = Sr

ij . If this inequality is violated, a plastic flow of the material is observed.
The problem of determining internal stresses is posed as follows. Using system (1), (2) and the boundary

conditions (3), we have to find the total stresses σ̃ij for a prescribed field of dislocation density αzx(x, y), αzy(x, y).
The self-balanced stresses σ′ij are readily calculated by differentiating the fields αij . The stresses σij are determined
by solving the boundary-value problem for the elliptic system (1) with the boundary conditions (3). The solution
of this problem can be divided into two stages. At the first stage, we find the components of the distortion tensor
βij(x, y) from the first three equations of system (1); after that, the displacements ui(x, y), strains εij(x, y), and
stresses σij(x, y) are found from the remaining equations of system (1).

The first stage involves a difficulty caused by the fact that the number of equations is smaller than the
number of unknowns [there are only three equations in system (1) for determining four unknowns βxx, βyy, βxy,
and βyx]. Hence, one component of βij can be set arbitrarily. Though βij enter the definition of the deviator of
elastic strains in an additive manner ee

ij = eij − (βij + βji)/2, the stress tensor σij = −Pδij + 2µee
ij is determined

uniquely because system (1) is invariant in the case of the gauge transformation [1]

u′i = ui + hi(xk), β′
ji = βji +

∂hi

∂xj
. (4)

This gauge transformation alters the components of the displacement vector ui and distortion tensor βij , whereas
the components of the tensors of elastic strains εe

ij = (∂ui/∂xj + ∂uj/∂xi)/2 − (βij + βji)/2, stresses σij , and
dislocation density αij remain unchanged. The components of the distortion tensor βij(xk) in the general case
are determined with accuracy to three arbitrary functions hi(xk). Using this arbitrariness, we can show that the
distortion tensor can be chosen in the form of a symmetric tensor βij = βji.

Let us first consider the general case. Let β′
ij be a certain solution of the equation [1] εjsp ∂β′

pi/∂xs = αji,
where αji = αji(xk) are prescribed functions and β′

ij 6= β′
ji. Since it is assumed that βkk = 0, according to (4), the

functions hi(xk) should satisfy the condition ∂hk/∂xk = 0. It follows from here that hi can be presented in the
form

hi = −εikl
∂fl

∂xk
, (5)

where fl = fl(xk) are arbitrary functions. Substituting (5) into Eqs. (4), we obtain

βji = β′
ji + εikl

∂2fl

∂xk∂xj
. (6)
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We require that the distortion tensor be symmetric, i.e., βij = βji. Using Eq. (6), we obtain a system of three
equations for three unknown functions fl:

εikl
∂2fl

∂xk∂xj
− εjkl

∂2fl

∂xk∂xi
= β′

ij − β′
ji. (7)

In the two-dimensional case, we should assume that i = 1, j = 2, and l = 3 in Eqs. (5) and (6). Then, one
component f3(x, y) is other than zero; from Eq. (7), we obtain the Poisson equation for this component:

∂2f3

∂x2
+

∂2f3

∂y2
= ω. (8)

Here ω = β′
xy−β′

yx is a specified function of coordinates. Note that f3 are determined from (8) nonuniquely because
Eq. (8) is resolved by the function f3 + f0, where f0 is the solution of the Laplace equation

∂2f0

∂x2
+

∂2f0

∂y2
= 0.

Thus, we have proved that the distortion tensor can be considered as symmetric (βxy = βyx). The nonuniqueness
indicated above means that, if there is a certain solution ux, uy, βxx, βxy, βyx of system (1), which satisfies the
condition βxy = βyx, then, according to (4), another solution is

u′x = ux + h1, u′y = uy + h2, β′
xx = βxx +

∂h1

∂x
, β′

xy = βxy +
∂h2

∂x
,

β′
yx = βyx +

∂h1

∂y
, h1 = −∂f0

∂y
, h2 =

∂f0

∂x
, h3 = 0.

If the function f0(x, y) satisfies the equation ∆f0(x, y) = 0, the components of the distortion tensor are symmetric
(β′

xy = β′
yx). The gauge is fixed by setting the function f0(x, y) or the distortion-tensor components βxx(x, y) and

βxy(x, y), after which, as is shown below, the displacements ux and uy are uniquely determined from the equilibrium
equations (1).

With allowance for the information given above, we write the system of equations for determining βij and
ep
ij as

∂βxy

∂x
− ∂βxx

∂y
= αzx,

∂βxx

∂x
+

∂βxy

∂y
= −αzy, ep

ij = βij . (9)

Differentiating the left and right sides of the first two equations in (9), we rewrite them as the Poisson
equations:

∂2βxx

∂x2
+

∂2βxx

∂y2
= −

(∂αzx

∂y
+

∂αzy

∂x

)
,

∂2βxy

∂x2
+

∂2βxy

∂y2
=

∂αzx

∂x
− ∂αzy

∂y
. (10)

The computational domain was a square (Fig. 1) whose boundaries were free from loading (fi = σijnj = 0),
and the components of the dislocation-density tensor αij at the boundary were assumed to be equal to zero. It
is assumed that the distribution of dislocations in the square is nonuniform. The maxima and minima of the
dislocation density are located in nodes of square cells and are described by the formulas

αzx = A1 sin kx sin ky, αzy = A2 sin kx sin ky, kH = 2πm. (11)

It was assumed in the calculations that H = 10−2 m, m = 15, and A1 = A2 = 2.72 · 102 m−1, which corresponds
to the scalar density of dislocations n = 8 · 1011 m−2 with the Burgers vector b = 3.4 · 10−10 m. The distribution of
dislocations (11) models a polycrystalline material where dislocations are concentrated at the boundaries of square
crystallites [3]. The total Burgers vector corresponding to distribution (11) equals zero. Substituting relations (11)
into the right side of Eqs. (10), we find the components of the distortion tensor βij and plastic strain tensor εp

ij :

βxx = εp
xx = (A2 cos kx sin ky + A1 sin kx cos ky)/(2k),

βxy = εp
xy = (A2 sin kx cos ky −A1 cos kx sin ky)/(2k).

(12)

Figure 2 shows the isolines of distortion βxy (plastic strain εp
xy) plotted by formulas (12). The distribution

of the component βxx has a similar form (with the only difference that the bands are parallel to the conjugate

873



H

xH

y

Fig. 1. Computational domain and isolines of the dislocation-density com-
ponent αzx (the inset shows the inner section: the dashed and solid curves
indicate the negative and positive levels, respectively).
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Fig. 2. Isolines of the plastic distortion component βxy (the inset shows the
inner section; notation the same as in Fig. 1).

diagonal, i.e., rotated by 90◦). Equations (12) describe the banded plastic strain, which leads to the distribution of
dislocation density in the form of a square grid (11).

The gauge is fixed by choosing the distortion-tensor components in the form (12). Let us show that system
(1) yields unique values of the displacements ux and uy for prescribed components of the distortion tensor (12).
Expressing stresses via displacements and distortions, we write the equilibrium equations in system (1) in the form
of the Navier equations:

∆ux +
1

1− 2ν

∂

∂x
div u = 2

(∂βxx

∂x
+

∂βxy

∂y

)
, ∆uy +

1
1− 2ν

∂

∂y
div u = 2

(∂βxy

∂x
− ∂βxx

∂y

)
.

Here ∆ = ∂2/∂x2 + ∂2/∂y2, div u = ∂ux/∂x + ∂uy/∂y, and ν is Poisson’s ratio. The equilibrium equations in (1)
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Fig. 3. Norm of the relative error versus the number of the iteration: the points show
the calculated values, and the curves show the scatter of numerical data.

reduce to equations of the linear elasticity theory with a volume force, which is expressed via the derivatives of the
distortion tensor (12) and is a unique function of coordinates. In this case, the theorems of existence and uniqueness
[4] are valid; it follows from these theorems that the displacements in the first boundary-value problem are uniquely
determined from system (1).

At the second stage, the equilibrium equations in (1) were solved by the pseudo-transient method. For this
purpose, inertial and viscous terms were added:

ρ
∂2ux

∂t2
=

∂σ0
xx

∂x
+

∂σ0
xy

∂y
, ρ

∂2uy

∂t2
=

∂σ0
xy

∂x
+

∂σ0
yy

∂y
,

σ0
ij = σij + 2ηėij , ėij =

1
2

( ∂vi

∂xj
+

∂vj

∂xi

)
− 1

3
∂vk

∂xk
δij , vi =

∂ui

∂t
.

(13)

Here the quantity σij is determined in (1); η is the artificial viscosity. System (13) was solved with fixed εp
ij and

boundary conditions (3) by a finite-difference method by the “cross” scheme [5]. As a result, the solution became
steady (vi → 0, ∂2ui/∂t2 → 0, and ėij → 0) and reduced to the corresponding solution of the steady problem
(σ0

ij → σij). The solution convergence was determined by the norm of the relative change in the solution during
one iteration

δi = ‖∆ui‖/‖ui‖ = max
x,y

|ui(t + τ)− ui(t)|/ max
x,y

|ui(t + τ/2)| < ε,

where ε � 1 is a prescribed small number, τ is the time step, and ui are the values of displacement components in
the difference-grid nodes.

The numerical calculation was performed for aluminum with the following parameters: ρ0 = 2.7 ·103 kg/m3,
K = 7.3 · 1010 Pa, µ = 2.48 · 1010 Pa, and η = 4.23 · 102 Pa · sec. Decaying oscillations were observed during the
calculation, and the solution rapidly reached the steady value. The solution-convergence process is illustrated in
Fig. 3. The norm of the relative change δx oscillates between the minimum value δx,min and maximum value δx,max,
which tend to zero as the iteration number increases and ensure solution convergence: δx → 0. The solution was
assumed to be steady under the condition max (δx, δy) < 2 · 10−4.

Figures 4a and 4b show the calculated isolines of stresses σxy and displacements ux, respectively. It is
seen that the displacements are a superposition of the banded and “staggered” distributions. The distribution of
stresses σxy is similar to the distribution of plastic distortion βxy. We have the stresses σxy = σyx = 0 at all
boundaries of the square.

875



1.00

0

0.25

0.50

0.75

1.000.750.500.25 x

y

1.00

0

0.25

0.50

0.75

1.000.750.500.25 x

yà

1.00

0

0.25

0.50

0.75

1.000.750.500.25 x

y

b

c

Fig. 4. Isolines of the components of stresses σxy (a), displacements ux (b), and total stresses σ̃xy (c) (the
insets show the sections in the vicinity of the top right corner: the dashed and solid curves refer to the
negative and positive levels, respectively).

The self-balanced stresses σ′xy are determined in accordance with (2) and (12):
σ′xx = −CA1k sin kx cos ky, σ′yy = CA2k cos kx sin ky,

σ′xy = CA1k cos kx sin ky, σ′yy = −CA2k sin kx cos ky.
(14)

Formulas (14) describe the “staggered” distribution of σ′ij . According to (2), the total stresses are determined by
the formula σ̃ij = σij + σ′ij . Figure 4c shows the isolines of the component σ̃xy of total stresses, constructed for
C = 2.64 · 102 Pa ·m2. Popov et al. [6] proposed the formula C = µl1l2, where l1 is the size of the crystallite and
l2 is the distance between the slip lines. The chosen value of C corresponds to the value l1 = 1/15 cm equal to the
period of the dislocation structure and to the distance l2 = 12 µm.

It is seen from Fig. 4c that, in contrast to σxy, the total stresses σ̃xy do not vanish on the left and right
boundaries of the computational domain. This is associated with the character of the distribution σ′xy(x, y) deter-
mined by the third equation in (14). The amplitudes of oscillations σ̃xy and σ′xy for the specified field of dislocations
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(11) are 1 GPa and 0.6 · 109 Pa, respectively. It is of interest to note that the distributions of total stresses and
displacements are similar to each other. Apparently, this is a random coincidence.

The distribution of total stresses almost in the entire domain is periodic and is determined by the field
of dislocations αzx and αzy. The periodicity is violated only in a narrow band near the boundary owing to the
influence of zero boundary conditions. The calculations show that the self-balanced stresses σ′ij have the same order
as the elastic stresses σij ; therefore, they have to be taken into account in calculating the total stresses σ̃ij .
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